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Part 1: Understanding the Spectra
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XAS and RIXS data can contain a lot of valuable 
information, but it is often not easy to interpret

There are three main approaches toward 
extracting information from the data:

Interpretation of Data

1. Comparison to reference data

2. Sum rules

3. Model the data with some relevant theory

L3 RIXS of Mn Oxides
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Example: Studying Ti coordination on reconstructed SrTiO3 
(110) surface

XAS with Auger electron yield (AEY) is more surface sensitive 
than total/secondary electron yield (TEY)

Comparison to reference spectra reveals Ti tetrahedra on the 
surface of this compound which has only octahedra in bulk

1. Comparison to Reference Data
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Sum rules provide a way to get information directly from the experimental data

Different combinations of polarized spectra can provide ground state expectation values

Consequence of the dipole operator acting on shells with specific azimuthal quantum numbers

In general, for XAS we have dipole matrix elements of the form

Considering the angular parts of the wavefunctions in conjunction with the normalized spherical harmonics 𝐶𝑞
(1)

 

leads to the sum rules for various polarized spectra.

2. Sum Rules

𝑓 𝜺 ∙ 𝒓 𝑖 = 𝑓 𝜀1𝑟𝐶1
(1)

+ 𝜀0𝑟𝐶0
(1)

+ 𝜀−1𝑟𝐶−1
(1)

𝑖
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For linear polarized light, on can derive sum rules which relate to orbital occupations

For example, with 𝑠 → 𝑝 XAS one can determine the number of holes 𝑛 in 𝑝𝑥/𝑝𝑦/𝑝𝑧 orbitals:

Example: linear dichroism in XAS of nickelate heterostructures determines relative occupation of 
𝑑3𝑧2−𝑟2 and 𝑑𝑥2−𝑦2 orbitals

Linear Polarization and Orbital Occupation Sum Rules

Phys. Rev. Lett. 111, 106804 (2013)

𝑋 =
𝑛3𝑧2−𝑟2

𝑛𝑥2−𝑦2
=

3𝐼𝐸||𝑧

4𝐼𝐸||𝑥 − 𝐼𝐸||𝑧

𝐼𝐸||𝛼

𝐼𝐸||𝑥 + 𝐼𝐸||𝑦 + 𝐼𝐸||𝑧
=

𝑛𝛼

𝑛
𝛼 ∈ 𝑥, 𝑦, 𝑧

Tensile Strain Compressive Strain
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With circular polarized light, we can determine the orbital and spin 
moments in ferromagnetic materials

Circular Polarization and Magnetic Moment Sum Rules

Phys. Rev. Lett. 75, 152 (1995)

*Caution: mspin expression is simplified, and is not always applicable
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3. Modelling Data using Theory

Simulate/fit spectra using a theoretical model

Model is constructed to capture the physics which govern the particular spectral response

Usually a combination of three different goals:

• Understand what controls different spectral features

• Determine model parameters from fits to experiment

• Test the accuracy of your theory
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Modelling Data using Theory

Use quantum mechanics to model spectra

For a given model Hamiltonian:

• Find ground state | ۧΨ0

𝐻Ψ = 𝐸Ψ
• Calculate spectrum

𝑆 𝜔, 𝝐 = 

𝑓

Ψ𝑓 𝝐 ∙ 𝒓 Ψ0
2

×
Γ𝑓/𝜋

𝐸0 + 𝜔 − 𝐸𝐹
2 + Γ𝑓

2

• Apply experimental broadening (instrumental resolution)

𝐼 𝜔, 𝝐 = න
−∞

+∞

𝑆 𝜔′, 𝝐 𝐺 𝜔 − 𝜔′ 𝑑𝜔′
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Local Models for XAS and RIXS
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Modelling Data using Theory

Multi-electron isolated atom

Crystal field theory

Ligand field theory

Anderson impurity model

Non-interacting methods (DFT)

Generally with core level spectroscopy, our model 
needs to capture local many-electron physics

Some models, from more local to more extended:

The best model to use will depend on what the material is, what the 
technique is, and what resonance we are looking at

We’ll mainly focus on the resonances of correlated atoms, so we’ll look at the 
local many-body models in more detail

L3 RIXS of Mn Oxides
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Isolated Atom

We are using QM, so need to solve the Schrödinger Equation: 𝐻Ψ = 𝐸Ψ

Hamiltonian for an isolated atom:

For a single electron atom (hydrogen), we have the 
usual radial and angular wavefunctions:

𝜓𝑛𝑙𝑚𝑙
𝑟, 𝜃, 𝜙 = 𝑅𝑛𝑙 𝑟 𝑌𝑙𝑚𝑙

𝜃, 𝜙

𝐻 = −
ℏ2

2𝑚


𝑗

𝛻𝑗
2 − 

𝑗

𝑍𝑗𝑒2

𝑟𝑗
+ 

𝑗>𝑘

𝑒2

𝑟𝑗𝑘
+ 

𝑗

𝜉 𝑟𝑗 𝒍𝑗 ∙ 𝒔𝑗
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𝐻 = −
ℏ2

2𝑚


𝑗

𝛻𝑗
2 − 

𝑗

𝑍𝑗𝑒2

𝑟𝑗
+ 

𝑗>𝑘

𝑒2

𝑟𝑗𝑘
+ 

𝑗

𝜉 𝑟𝑗 𝒍𝑗 ∙ 𝒔𝑗

Isolated Atom

For spectroscopy, we do not need a full solution for the whole atom

Just need the many-electron eigenstates of active subshells

The closed subshells just give rigid energy shifts of our eigenstates/spectra

So we define an effective H which gives the eigenstates of the open shells

𝐻 = −
ℏ2

2𝑚


𝑗

𝛻𝑗
2 − 

𝑗

𝑍𝑗𝑒2

𝑟𝑗
+ 

𝑗>𝑘

𝑒2

𝑟𝑗𝑘
+ 

𝑗

𝜉 𝑟𝑗 𝒍𝑗 ∙ 𝒔𝑗
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For spectroscopy, we do not need a full solution for the whole atom

Just need the many-electron eigenstates of active subshells

The closed subshells just give rigid energy shifts of our eigenstates/spectra

So we define an effective H which gives the eigenstates of the open shells

𝐻 = 

𝑗>𝑘

𝑒2

𝑟𝑗𝑘
+ 

𝑗

𝜉 𝑟𝑗 𝒍𝑗 ∙ 𝒔𝑗

Now we switch to second quantization and solve the Schrödinger equation

Isolated Atom
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Valence Shell Eigenstates for an Isolated Atom

Consider a Sm3+ ion:

            1s2  2s2  2p6  ...  4f5

Since we only consider the 4f shell, we have a basis containing 14 spin-orbitals

The five 4f electrons can occupy any of the fourteen 4f spin orbitals, so we have

14
5

= 2002 eigenstates in our basis

Which corresponds to occupation determinants of the form:

ۧ|11111000000000 , ۧ|11110100000000 , ۧ|11110010000000 ,  etc.

Because of Coulomb and spin-orbit interactions, the states corresponding to the various arrangements of 
the two electrons will not in general be degenerate and will be linear combinations of the occupations
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Valence Shell Eigenstates for an Isolated Atom

𝐻 =  𝐻𝑈
𝑓𝑓

+ 𝐻𝒍∙𝒔
𝑓

Coulomb interaction between pairs of electrons

Includes the usual monopole (Mott-Hubbard) part as well as multipole (multiplet) part

𝐻𝑈
𝑓𝑓

= 

𝑖,𝑗

1

2

𝑒2

𝑟𝑖 − 𝑟𝑗

= 

𝜏1,𝜏2,𝜏3,𝜏4

𝑈𝜏1,𝜏2,𝜏3,𝜏4
𝒇𝜏1

† 𝒇𝜏2

† 𝒇𝜏3
𝒇𝜏4

15/35



Valence Shell Eigenstates for an Isolated Atom
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Now we start from the ground state we found, and calculate the spectrum as described earlier

Note that in the XAS final state, we have another open subshell (in this case the 3d shell because 3d – 4f XAS)

Spectroscopy (XAS) for an Isolated Atom

𝐻 =  𝐻𝑈
𝑓𝑓

+ 𝐻𝑈
𝑑𝑓

+ 𝐻𝒍∙𝒔
𝑓

+ 𝐻𝒍∙𝒔
𝑑

If we diagonalize this with 3d9 and 4f5+1 occupations, we get the XAS final states.  

Again they will be spread in energy due to Coulomb and spin orbit interactions.
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To the right is Sm3+ XAS as we gradually 
add all terms of the final state atomic 
Hamiltonian. 

The H0 term is just the onsite energies.

We then add spin orbit interaction and 
then Coulomb interaction

Also shown is Sm2+, which demonstrates 
the strong valence sensitivity

Spectroscopy (XAS) for an Isolated Atom
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For 4f systems, this purely atomic model can give very good agreement with experiment

But this also means we aren’t really sensitive to material-dependent properties.  
• 3d → 4f XAS is primarily a probe of valence (with some exceptions)

Comparison to Experiment
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Increasing Complexity – Crystal Field Theory

Now try to account for local environment

The valence electrons of our atom of interest are perturbed by the nearest neighbors

Crystal field theory accounts for this by adding a specific potential to the valence electrons

Now we add a new operator to our Hamiltonian, accounting for the specific point group defined by 
nearest neighbours, which shifts the energies of the orbitals

𝐻 =  𝐻𝑈
𝑑𝑑 + 𝐻𝒍∙𝒔

𝑑 + 𝐻𝐶𝐹 𝐻𝐶𝐹 = 

𝜏

𝜀𝑑,𝜏𝒅𝜏
†𝒅𝜏

For Oh point group symmetry:

𝐻𝐶𝐹 = 

𝜏∈𝑒𝑔

6𝐷𝑞 ∙ 𝒅𝜏
†𝒅𝜏 − 

𝜏∈𝑡2𝑔

4𝐷𝑞 ∙ 𝒅𝜏
†𝒅𝜏
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CFT Example: Ti4+ XAS

2p

3d
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CFT Example: Ti4+ XAS

2p

3d
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CFT Example: Ti4+ XAS

2p

3d
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CFT Example: Ti4+ XAS

2p

3d

+𝑈𝑑𝑑 + 𝑈
𝑝𝑑
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CFT Example: Ti4+ XAS
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CFT Example: Ti4+ XAS

2p

3d

+𝑈𝑑𝑑 + 𝑈
𝑝𝑑
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Crystal Field Perturbations in Various Point Groups

R. Green, PhD Thesis (2013)

We use specific crystal field 
operators depending on local 
point group symmetry

The five 3d orbitals (or seven 4f 
orbitals) split in energy into 
different groups (and may mix) 
depending on the symmetry
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Example: CFT Analysis of RIXS to Locate Impurities

Phys. Rev. B 83, 115207 (2011)

Mn2+ RIXS calculated as function of 10Dq shows difference 
between octahedral (upper dashed) and tetrahedral (lower 
dashed) coordination.

L3 L2

From this we showed that at low doping (11%), Mn atoms are in 
tetrahedral (Zn) sites.  At high doping, they form clusters with 
octahedral coordination.



Crystal field model works quite well in a lot of cases – in particular for ionic compounds or rare earth 
compounds

Covalence effects are approximated in CFT with renormalization of parameters
• Generally larger crystal fields and smaller Coulomb interaction (Slater) parameters in CFT

But often we need to include covalence explicitly:  ligand field theory

Instead of approximating neighbors as point charges, we 
directly include their orbitals in our basis

Increasing Complexity – Ligand Field Theory
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We can take advantage of symmetry to reduce the complexity of the problem

The local orbitals mix with linear combinations of neighboring orbitals which have the same 
rotation properties of the local orbitals in the point group of the model

E.g. for 10 3d orbitals, we define 10 “ligand” orbitals which are linear combinations of the actual 2p 
anion orbitals

For 3d eigenstates, we now have 20 spin orbitals in our basis.  I.e. for Mn2+ (3d5),

| ۧ1111100000 1111111111

Add hybridization operator to Hamiltonian

Increasing Complexity – Ligand Field Theory

𝐻 =  𝐻0
𝑑 + 𝐻𝑈

𝑑𝑑 + 𝐻𝒍∙𝒔
𝑑 + 𝐻𝐶𝐹 + 𝐻0

𝐿 + 𝐻ℎ𝑦𝑏

𝐻ℎ𝑦𝑏 = 

𝜏

𝑉𝜏 𝒅𝜏
†𝑳𝜏 + 𝑳𝜏

†𝒅𝜏
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Through hybridization, we now have bonding and 
antibonding states

Compare with a simple two level model:

Set a = 0, b = 0.2

Ligand Field Theory

𝐻 =
𝑎 𝑉
𝑉 𝑏
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In LFT, each of our “levels” is an 
entire configuration (i.e. a matrix).  

Ligand Field Theory

𝐻 =
𝑑𝑛 𝑉
𝑉 𝑑𝑛+1𝐿

R. Green, PhD Thesis (2013) 26/35



A mixed ground state wavefunction means we can reach different final states in our spectroscopy

For the final states:

Ligand Field Theory
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Modelling L2,3 XAS Spectra from Local Perspective

Example: NiO

Single atom, all interactions

Add crystal field potential

Hybridization involving 
nearest neighbours
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Ligand field theory works very well to account for covalence in these local spectroscopy techniques

However, in some cases it is important to include more than the nearest neighbor ligands to 
account for the ligand bandwidth

When we include more ligands we have an Anderson impurity model

Increasing Complexity – Impurity Model

𝐻 =  𝐻𝐿𝐹𝑇 + 𝐻𝐿𝐿

𝐻𝐿𝐿 =  

𝑖=2

𝑁

𝜀𝐿𝑳𝑖
†𝑳𝑖 + 𝑇𝐿𝐿 𝑳𝑖−1

† 𝑳𝑖 + 𝑳𝑖
†𝑳𝑖−1

* 𝜏 dependence left out for clarity

Extend basis 
by 10x(N-1) 
spin orbitals
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Compare with Two-Level (LFT) Model

𝐻 =

 𝑎 𝑉𝑎𝑏 − − −
𝑉𝑎𝑏 𝑏1 𝑉𝑏𝑏 − −
− 𝑉𝑏𝑏 𝑏2 𝑉𝑏𝑏 −
− − 𝑉𝑏𝑏 … 𝑉𝑏𝑏

− − − 𝑉𝑏𝑏 𝑏𝑛

𝐻 =
𝑎 𝑉
𝑉 𝑏

Ligand Field:

Impurity:
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| ۧ𝑑𝑛

| ൿ𝑑𝑛+1𝐿

| ൿ𝑑𝑛+2𝐿2

Δ

Δ + 𝑈

Energetics of Ligand Field and Impurity Models

We now have many copies of 
configurations which leads to 
continua of states
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From LFT to Impurity Model in XAS
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The larger the number of 
ligand band discretizations, 
the closer we get to true 
continuum features in our 
spectra
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Modelling L2,3 XAS Spectra from Local Perspective

Example: NiO

Single atom, all interactions

Add crystal field potential

Hybridization involving 
nearest neighbours

Hybridization involving rest 
of material
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Modelling L2,3 RIXS Spectra from Local Perspective

Using more advanced models also 
helps to capture all RIXS features
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Summary (Part 1)

In systems where electrons are relatively localized, we can simulate XAS and 
RIXS with local models

Going from extreme ionic to extreme covalent limits, we can increase our 
model complexity:

• isolated atom
• crystal field
• ligand field
• impurity
• other (multi-site models, metallic impurity model, etc)

In Part 2, we’ll look at how to implement these models in Quanty
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