REIXS Data Storage Strategies: HDF5 and Metadata

Teak D. Boyko PhD Senior Scientist/REIXS Beamline Responsible

Canadian Centre canadien Light de rayonnement Source synchrotron

Outline

- How do/did we write experimental data?
 - Standard files and custom auxiliary files.
- Why move to HDF5 and not stick with ASCII files?
 - Data size and organization with higher dimension data sets.
- What is the structure of the HDF5 files?
 - NeXus format and current HDF5 structure.
- What at the advantages of HDF5 (binary files)?
 - Disk space and data access.
- How do users deal with HDF5?
 - Tools available for users.

How did we use to write data?

- Prior to 2017 the RIXS ES data acquisition was with in-house Software Acquaman
 - Binary format: CDF
 - Export final data in ASCII
 - Phased out during 2016-2017 upgrade
 - RSXS ES always used FOURC
 - Only wrote to one ASCII file.
- REIXS started using SPEC/FOURC for all data acquisition in 2017
 - Main SPEC/FOURC file: ASCII
 - SCAs only
 - Auxiliary files added for RIXS (later RSXS): ASCII
 - SDD needs MCAs
 - XES Spectrometer needs both MCAs and images.

Canadian Centre canadien Light de rayonnement Source synchrotron

♯F N_calib.dat

#E 1674573277 #D Tue Jan 24 09:14:37 2023 #C RIXS User = boykocls

#O0 Samp X Samp Y Samp Z Samp Th Samp Horz Samp Depth Samp Vert Samp Angle #01 Detect Z Spectr Rot MCP A Tilt MCP B Tilt Spectr Tran XES Angle XES Dist MCP Angle #O2 ES Trans Energy LI Angle Hex X Hex Y Hex Z Hex U Hex V #03 Hex W #o0 ssx ssy ssz ssth ssh ssd ssv ssa #o1 detz spr deta detb spt spa spd dta #o2 est engy lian hex x hex y hex z hex u hex v #o3 hex_w #J0 Dwell Mesh Sample MCP_A MCP_B SDD_Tot SDD_ROI CEM #J1 XEOL_Max Mesh_Curr Samp_Curr Mono_Engy Ring_Curr Samp_Temp Test_Engy #j0 sec i0 tey mcpa mcpb sddt sddr cem #j1 xeol i0_a tey_a beam ring temp testE #S 1 ascan engy 380.005 380.005 2 60 #D Tue Jan 24 09:16:15 2023 #T 60 (Dwell) #G0 0 #G1 0 #G3 0 #G4 0 #Ç

#P0 -4.8337997 -0.67100037 124.7 290.625 0 0 -2 62.5 #P1 18.75 200.5044 17.254718 12.501289 952.9702 7.5135 952.15 5.454 #P2 -1.9444649 379.995 0 18.805 2.111 17.963 0.021 0

```
#P3 0
#N 17
```


How did we use to write data?

0-7

- Prior to 2017 the RIXS ES data acquisition was with in-house Software Acquaman
 - Binary format: CDF
 - Export final data in ASCII
 - Phased out due to lack of support
 - RSXS ES always used FOURC
 - Only wrote to one ASCII file.
- REIXS started using SPEC/FOURC for all data acquisition in 2017
 - Main SPEC/FOURC file: ASCII
 - SCAs only
 - Auxiliary files added for RIXS (later RSXS): ASCII
 - SDD needs MCAs
 - XES Spectrometer needs both MCAs and images.

n	Centre canadien	
	de rayonnement	
	synchrotron	

	#2	SCa	an	T																	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Fe2O3_MEG 2017-07-07 10:43 AM DAT File									68	B K											
Fe	203	_MI	EG.d	lat_i	mg		201	7-0	7-07	/ 10:	43 A	١M		DA	T_IN	/IG F	ile			517	7 K
Fe	203	_MI	EG.d	lat_r	ncp		201	7-0	7-07	/ 10:	43 A	١M		DA	T_M	CP	File			10	5 K
Fe	203	M	EG				201	7-0	7-07	/ 10:	43 A	١M		DA	t si	DD I	File			216	5 K

How do we currently write data?

- Major Data Overall in 2018/2019
 - Consistent format between RSXS ES and RIXS ES
 - SPEC/FOURC headers in auxiliary files.
 - Higher level data orginzation
 - Image stacks: RSXS only
 - Detector scales added
 - Data organized by date and group
 - Secure access with group user accounts
- Development of HDF5 in 2020
 - Introduced on RIXS ES in late 2022
 - Now the standard for data access.
 - Introduced on RSXS ES in early 2023
 - Users still reliant on ASCII files.

#S	1 rscan engy 845 875 20 1
#D	Sat Dec 18 16:04:46 2021
#N	1024
#T	1
#C	MCP Energy Scale
820	.860107
820	.941223
821	.0224

#S 1 rscan engy 845 875 20 1
#D Sat Dec 18 16:04:46 2021
#N 1024
#T 1 (Dwell)
#C SDD Energy Scale
#@CALIB -20.019 2.6698
-20.0189991
-17.3491993
-14.6794004

Where do we go from here? HDF5

- More and more files..
 - Now 3 MCA detectors (SDD, XES, XEOL): but adding two more
 - Would need 2 additional files.
 - What about data retention and organization?
- HDF5: Organized and compact
 - Multiple scans per file
 - Each detector can be grouped and aliased in standard locations
 - Higher dimensional data is easily appended
 - Stacks, images, lines
 - Extremely rich metadata
 - Beamline snapshot captured before each scan

Canadian Centre canadien Light de rayonnement Source synchrotron

	Grating					
SCAN 001	Mirror					
Beamline	Optics					
Aporturos	M1A					
Apertures	M1B					
4-Jaw_1	M3					
4-Jaw_2	M4					
Chopper	M5					
	Source					
EXIT_SII	EPU					
VA	Ring					

Monochromator

Dataset	Rank	Dim Sizes	Туре	Value
Q1	1	1;	32-bit LE float	37.498
Q2	1	1;	32-bit LE float	0
Q3	1	1;	32-bit LE float	-37.498
Q4	1	1;	32-bit LE float	0
gap	1	11;	64-bit LE float	214.721, 214.721,
harmonic	1	1;	32-bit signed	1
lian	1	1;	64-bit LE float	0
offset	1	11;	64-bit LE float	182.061, 182.061,
polarization	1	1;	string	"LINEAR VERT -"

What is NeXus and should we follow the standards?

- NeXus is an international standard for HDF5 files.
 - <u>http://www.nexusformat.org</u>
 - Dictates required attributes and organization of the HDF5 file.
- REIXS will make efforts to adhere to NeXus standards.
 - Ensure future consistency.

3.3.2.26. NXxas

Status:

application definition, extends NXobject

Description:

This is an application definition for raw data from an X-ray absorption spectroscopy experiment.

This is essentially a scan on energy versus incoming/ absorbed beam.

SCAN XXX **Beamline** Apertures Diagnostics Monochromator Optics Source Data Endstation Counters Detectors Motors Sample Translation Vacuum

Why not stick with ASCII files? Why HDF5?

- ASCII files require the entire file to be parsed.
 - Large ASCII files need to be loaded into memory.
 - Access time scales with file size.
- ASCII files can not be modified unsequentially.
 - New data can not be easily inserted, only appended to the end.
 - HDF5 does not support duplicate data, but more data can always be added.
- HDF5 supports linking.
 - Redundant data can be well organized without additional overhead.
- Working with data is easier.
 - Large images and stacks can directly loaded into arrays for data reduction.

- Comments can be inserted retroactively after the scans have finished.
 - Overnight macro.

Dataset	I [] Value
command	1s "timescan 1 0"
comment_01	¹ 1s "XEOL with chamber light off"
computer	1s "IOC1610-407"
date	1s "2023-05-29 11:54:49-0600"
profile	1s "RIXS"
status	[·] 1s "Scan was cancelled by user."
user	1s "reixs"

Why not stick with ASCII files? Why HDF5?

Is HDF5 more efficient for data storage?

- The short answer: sometimes, but mostly no.
 - Increase meta data.
 - More complex data sets.
- We just end up making more data because it is easier.
- HDF5 can store data more efficiently if it is not mostly zeros..
 - Space in ASCII for zero in array (2 bytes)
 - 32 bit/64 bit unsigned in HDF5 (4-8 bytes)
 - Space saved if the average value is 5-6 digits (6-7 bytes)
- Large files create delays in network synchronization.
 - Working solution for passive synchronization.
 - Deploy in next cycle.

Gigabit connect for syncing - 125MB/s or 8s for 1GB files

Туре		Size
H5 File	108	883,441 KB
H5 File	61	646,085 KB
H5 File	41	336,799 KB
H5 File	34	265,228 KB
H5 File	28	217,804 KB

≈10 MB/scan

How to interface with HDF5?

Display Waves Variables

✓ Info ✓ Plot

New Data Folde Save Copy Browse Expt...

Delete

Select an object to view its

Analysis Statistics Macros Windows Misc ImageProcs Help

- Many options for HDF5
 - Igor (built-in browswer)
 - Linux (h5dump)
 - Most programming languages have a hdf5 library
 - HDF group HDF VIEW
 - <u>https://www.hdfgroup.org/download</u> <u>s/hdfview/</u>
 - Beamline supported Jupyter Notebook
 - https://pypi.org/project/reixs/

Patrick Braun will talk about our Jupyter Notebook Next!

Canadian Centre canadien Light de rayonnemer Source synchrotron

🌑 🗖 🗖 🗳 🐔 🏶 😮	
? - • •	HDF5Browser0
→	Create HDF5 File Open HDF5 File C
	Read Only
Name	•••••
V V root	File: Z:user_data:reixs:2023_06:XEOL_Test.h5
XEOL_lest	_
> M Endstation	Selected Group: /
> Data	
> 🚾 Beamline	Selected Dataset:
🚱 user	
💮 status	Use Hyperselection Hyper Selection Wave:
profile	
date0	✓ Load Groups Recursively Transpose 2D Datasets
computer	
command	
> Mackages	Groups Load Group Save Data Folder
	root
	SCAN 001
Filter < > 📀	Beamline
information.	Apertures
	4-Jaw_1
	4-Jaw 2
	Chapper
	Choppen
Delect a single numeric Wave to see a plot.	Exit_Slit
	VA
т Т	v
τ!	Group Attributes
	Stoup Attinutes

Outlook - Questions for you? Or for me...

- Phasing out dates for ASCII
 - RIXS ES: October 2023
 - ASCII files are already not being used, just there as a backup.
 - RSXS ES: January 2024
 - Only main SPEC/FOURC data file will be available and main HDF5 file.
- Are there concerns with the phasing out of ASCII data?
- What metadata would you like that isn't there?

