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Chapter 1

Resonant soft x-ray scattering

1.1 Overview

Resonant soft x-ray scattering (RSXS) is a technique that extends conventional x-ray
diffraction (XRD) beyond the study of atomic positions in order to gain element, site,
valence and orbital specific information about ordered states of matter. This specificity
is gained by tuning the photon energy to an x-ray absorption edge, providing sufficient
energy to excite an inner-shell core electron into an empty valence state and altering the
anomalous components of the atomic scattering form factor such that it depends strongly
on photon energy, photon polarization and the electronic environment of the scatterers.
This resonant effect enhances the scattering amplitude, making it possible to detect weak
ordering signatures, and embeds a wealth of information about the charge, spin and orbital
degrees of freedom of the electronic order into the scattering process. In transition metal
(TM) oxides, most of the interesting physics occurs at low energies, near the Fermi level
of the transition metal ion. These low-lying empty states can be probed using soft x-rays
(~ω ∼50-2000 eV) which can resonantly excite the strong 2p→ 3d, 3d→ 4f , and 4d→ 5f
dipole-allowed transitions of TM ions. In contrast, hard x-rays (~ω > 10 keV) are less
useful for transition metal ions, since they probe the 4p states well above the Fermi energy
via the 1s→ 4p transition.

Over the past two decades, the impact and importance of RSXS has grown signifi-
cantly thanks to numerous advances in instrumentation and the theory of the resonant
scattering.[1] Third generation synchrotrons have provided simple control of the incident
photon energy and polarization (thanks to elliptically polarizing undulators [2]), while pro-
viding very high photon flux, excellent energy resolution (eg. a resolution of ∆E ∼ 0.1
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eV at E = 1000 eV is typical at most soft x-ray beamlines), better electron orbit sta-
bility and improved x-ray beam focusing properties.[3] Notable advances in the theory of
resonant scattering have included the discovery of polarization dependence to anomalous
scattering,[4] the appearance of forbidden reflections due to anisotropic x-ray susceptibility
in crystals,[5] the theoretical description of magnetic resonant x-ray diffraction,[6, 7] and
the development of frameworks to calculate resonant inelastic x-ray scattering spectra.[8, 9]

In this chapter, fundamental aspects of elastic RSXS will be presented. A theoretical
treatment tailored to supplement the following chapters is presented in section 1.2. More
exhaustive reviews of the theory of resonant scattering are available.[10, 11, 12, 13, 14,
15, 16, 17] Experimental details particular to the REIXS beamline at the Canadian Light
Source will be discussed in section 1.3.

1.2 Basic theory of resonant elastic x-ray scattering

1.2.1 Diffraction

The diffraction of x-rays by crystals, structures composed of periodic arrangements of atoms
that form a Bravais lattice,[18] was discovered in 1912 and has had an immeasurable impact
on a vast array of disciplines.[19, 20] When a plane wave of the form eik·r is incident on
periodic lattice of atoms, each atom causes a scattered radial wave of the form feiQ·r/r (for
non-zero scattering angle),[21] where f is the atomic scattering form factor of the scattering
atom. In a classical picture, this coincides with the incident wave causing an electron to
vibrate and behave like a dipole that emits a radial wave with a scattering amplitude of
f . Far from the scatterer, the emitted radial wave can be approximated by a plane wave.
Constructive interference of many of such emitted plane waves from atoms in a lattice
occurs when the difference in path length for plane waves arising from crystal planes that
are separated by a distance d is an integer multiple of the wavelength. This describes the
famous Bragg formulation of diffraction,[22] governed by the equation nλ = 2dHKL sin θ,
where λ is the x-ray wavelength, dHKL is the interplanar separation (for a given set of
lattice planes with Miller indices H, K, and L), θ is the scattering angle and n is the order
of the interference.

Alternatively, it is possible to sum the emitted plane waves keeping track of their
relative phases and arrive at the Laue condition for diffraction, k′ − k = G, where G is a
vector of the reciprocal lattice.[23] The Laue formulation is more useful when dealing with
diffraction from a single crystal composed of multiple atom types, and it is more explicitly
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written as a set of three simultaneous equations.[23]

a1 · (k′ − k) = 2πH

a2 · (k′ − k) = 2πK (1.1)

a3 · (k′ − k) = 2πL

Here, a1, a2 and a3 are the primitive vectors of the crystal lattice and H, K and L are
Miller indices for a reciprocal lattice vector G that satisfies G = Hb1 +Kb2 +Lb3, where
b1, b2 and b3 are the basis vectors for the reciprocal lattice.[24]

To account for the rotation of the crystal, and simplifying the problem to consider only
cubic, tetragonal or orthorhombic lattices, it is useful to write a(1,2,3) = (a, b, c)R.O(a,b,c),
where a, b and c are lattice constants, O(a,b,c) are the initial orientation vectors of the crystal
axes in the diffractometer frame (eg. for a horizontal scattering geometry, x̂=primary
beam direction, ẑ=vertical direction, ŷ=perpendicular to x̂ and ẑ in horizontal plane) and
R is a rotation matrix that rotates the crystal axes by the diffractometer’s rotations (eg.
R = Rθs · Rχ · Rφ). If one eliminates φ and χ rotations and considers only horizontal
plane scattering, then it is possible to show that for a crystal with initial orientation
Oa = −x̂ and Ob = ŷ, the sample rotation angle θs and the detector angle 2θ are related
to Q = 2π(H/a,K/b) according to:

2θ = 2 sin−1

 hc

2E

√(
H

a

)2

+

(
K

b

)2
 (1.2)

θs = θ − tan−1

(
H

K

b

a

)
, (1.3)

where h is Planck’s constant, c is the speed of light in vacuum and E is photon energy.1

Equations 1.2 and 1.3 are very useful for RSXS, since soft x-ray diffractometers typically
operate in a 2-circle mode (fixed χ and φ) with the detector kept in the scattering plane.
However, use of Eq. 1.1 can in principle be used to calculate scattering geometries for
H, K and L indices in 3- and 4- circle modes. In practice, many diffractometers are
typically running the scientific diffraction software spec, that includes a program called
fourc.[25] This program implements a general form of Eq. 1.1, based on previously estab-
lished calculations,[26] that can automatically calculate appropriate scattering geometries
for requested reciprocal lattice vectors, provided that the crystal parameters and initial
crystal orientation are set correctly.

1See Section A.1 for a derivation of these equations.
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As mentioned previously, the Laue formulation consists of summing up the plane waves
emitted by all the atoms in a crystal. This approach is useful as it provides a way to
calculate the scattering intensity as a function of Q, the incident and emitted photon
polarization vectors ε and ε′, and the photon energy E = ~ω. Assuming (for now) that
the quantum mechanical light-matter interaction that occurs when a plane wave interacts
with an atom in a crystal can be fully captured by the atomic scattering form factor
f → f(ω, ε, ε′), it is possible to write down an expression for the scattering intensity in
terms of this sum.[15, 17]

I(Q, ω, ε, ε′) ∝

∣∣∣∣∣∑
j

fj(ω, ε, ε
′)eiQ·Rj

∣∣∣∣∣
2

(1.4)

In Eq. 1.4, the sum is over all atomic sites j, with atomics positions denoted by Rj.
Following others, it is illustrative to index the coordinate system differently. IfRj is instead
written as Cm + rj, where Cm points to the center of unit cell m and rj locates the atoms
within the unit cell relative to Cm, then the scattering intensity can be separated into two
components: a unit cell structure factor F (ω, ε, ε′) and a lattice component L(Q).

I(Q, ω, ε, ε′) ∝

∣∣∣∣∣∑
m,j

fj(ω, ε, ε
′)eiQ·(Cm+rj)

∣∣∣∣∣
2

=

∣∣∣∣∣∑
j

fj(ω, ε, ε
′)eiQ·rj

∣∣∣∣∣
2

×

∣∣∣∣∣∑
m

eiQ·Cm

∣∣∣∣∣
2

= |F (ω, ε, ε′)|2 × |L(Q)|2

(1.5)

The lattice component has to do with interference of scattering arising from different unit
cells whereas the unit cell structure factor describes interference coming from within the
unit cell. In the limit that the number of unit cells goes to infinity, all the cells will scatter
coherently (in phase) and L(Q) ∝

∑
G δ(Q − G),[17, 21] which is a convenient way to

arrive at the Laue condition (scattering occurs when Q = G).2 This procedure also shows
that for long range order, one only needs to calculate the unit cell structure factor in order
to calculate the scattering intensity function.

2This derivation is shown neatly in Ref. [21], section 3.2.4.

4



1.2.2 Quantum mechanical origin of resonant scattering

The quantum mechanical origin of resonant scattering traces back to the interaction be-
tween an electromagnetic field and a Dirac (spin-1/2) particle. The general approach
for finding the scattering amplitude is to treat either the Schrödinger Hamiltonian, the
Schrödinger-Pauli Hamiltonian or the Dirac Hamiltonian, up to second order in perturba-
tion theory.[27, 28, 15] To capture the interaction of an electron with the electromagnetic
field, the momentum operator p is replaced with p−eA/c, where A is the vector potential
of a quantized, time-dependent radiation field.

The approach I follow (as in Refs. [27, 29, 15]) is to consider the low energy limit
(Ex-ray � mc2 ' 511 keV) of the Dirac Hamiltonian given by:

HD = βmc2 + eV (r) + cα · [p− eA(r, t)] , (1.6)

where β and α are 4 × 4 Hermitian matrices (see Ref. [30] Sec. 3-2 or Ref. [31] for their
properties), si is the electron spin, V (r) is the vector potential, and m is the electron
mass. This approach is appropriate for scattering at almost all x-ray absorption edges
(especially for soft x-rays Ex-ray < 2 keV). It also has the benefit of resolving all the
dominant resonant and non-resonant magnetic and non-magnetic terms that contribute to
the scattering cross-section. It has been shown that Eq. 1.6 leads to the following matter-
radiation interaction Hamiltonian, Hint = H1 + H2 + H3 + H4, when small relativistic
corrections are dropped.[27, 29, 15] The sum is over electrons labeled by index i.

H1 = +
∑
i

e2

2mc2
[A(ri, t)]

2 (1.7)

H2 = −
∑
i

e2~
2m2c4

si [∂tA(ri, t)×A(ri, t)] (1.8)

H3 = −
∑
i

e

mc
[A(ri, t) · pi] (1.9)

H4 = −
∑
i

e~
mc
si · [∇×A(ri, t)] (1.10)

Restricting our discussion to elastic scattering, we now consider how scattering events
can occur through Hint. An elastic scattering process can be defined as the interaction of
a photon (ε,k) with the electron system in a state |G〉 that results in the emission of a
photon (ε′,k′) and leaves the system in the final state |G〉 (for an elastic process |k| = |k′|).
This can occur most simply by an interaction that absorbs (annihilates) the photon (ε,k)
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and then emits a new photon (ε′,k′) without causing any electronic transitions. Elastic
scattering can also occur in cases where the absorption causes the electron to transition
out of state |G〉 into an intermediate state |I〉 which subsequently decays back to |G〉 by
emitting a photon. The former process is called non-resonant scattering and the latter is
called resonant scattering.

We can understand these cases explicitly by checking how the four terms in Hint act
upon |G〉. To do this, we introduce a general quantized vector potential as an expansion
in plane waves (with the Coulomb gauge ∇ ·A = 0), given by

A(r, t) =
∑
k,µ

√
hc

V |k|

(
ak,µεµ(k)ei(k·r−ωkt) + a†k,µεµ(k)e−i(k·r−ωkt)

)
, (1.11)

where V is the volume of the quantization box and a†k and ak are, respectively, photon
creation and annihilation operators that operate on photons with wavevector k and mode
µ.[29] The mode is conventionally represented by unit vectors that are either parallel to the
scattering plane (π-polarization) or perpendicular to the scattering plane (σ-polarization)
and in both cases perpendicular to the incident/scattered wave propagation directions.

The significance of Eq. 1.11 is that the vector potential is linear in the creation and
annihilation operators, which means that it must operate twice on |G〉 in order for elastic
scattering to occur.3 Hence, the terms H1 and H2, which are both quadratic in A, will
contribute in first order to elastic scattering. To calculate the transition rate and ultimately
the scattering cross-section, we first need calculate the matrix elements M1 = 〈G|H1|G〉
and M2 = 〈G|H2|G〉.[32, 33, 29, 15, 17]

To obtain the dominant scattering contributions of H3 and H4, which are both linear
in A, second order perturbation theory is needed. Following others,[29, 15] the expression
for the matrix elements M3 +M4 is given by

M3 +M4 =
∑
n

〈G|H∗3 +H∗4|In〉〈In|H3 +H4|G〉
~ωk − (En − Eg) + iΓ

2

, (1.12)

where the system transitions from a ground state |G〉 with energy Eg into all n accessible
intermediate states |In〉 with energy En and lifetime ' ~/Γ. The number of transitions

3To see why, simply consider that (a+ a†) acting on the vacuum state |0〉 gives |0〉+ |1〉 and therefore
does not preserve the number of photons. In contrast, (a+a†)2 has four terms and when acting on |0〉 one
of these terms that will first annihilate and then create a photon, as needed for scattering. It also has a
term that will first create and then annihilate a photon and two terms that create/annihilate ±2 photons,
but these extra terms do not correspond to scattering.
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per unit time w is then given by Fermi’s golden rule and can be evaluated as

w =
2π

~
|M1 +M2 +M3 +M4|2 δ(~ωk − ~ωk′)

=
2π

~

∣∣∣∣∣〈G|H1 +H2|G〉+
∑
n

〈G|H∗3 +H∗4|In〉〈In|H3 +H4|G〉
~ωk − (En − Eg) + iΓ

2

∣∣∣∣∣
2

δ(~ωk − ~ωk′).
(1.13)

This general expression can be used to calculate all the dominant contributions of charge
and magnetic scattering for both resonant and non-resonant processes. While magnetic
x-ray scattering is a deep and interesting subject, the studies contained within this thesis
rely on charge scattering, so for simplicity I will now drop the terms M2 and M4 that
contain the spin s (see Refs. [34, 6, 7, 35, 29, 15] for more on magnetic x-ray scattering).
Using Eq. 1.11, the matrix elements M1 and M3 become

M1 = 〈G|
∑
i

e2

2m
[A(ri, t)]

2 |G〉

=
hc

V |k|
e2

mc2
(ε∗µ′ · εµ)

∑
i

〈G|ei(k−k′)·ri |G〉 (1.14)

M3 =
∑
n

〈G|
∑

i
e
mc

[A∗(ri, t) · p∗i ] |In〉〈In|
∑

i
e
mc

[A(ri, t) · pi] |G〉
~ωk − (En − Eg) + iΓ

2

=
hc

V |k|m
e2

mc2

∑
n

〈G|
∑N

j=1 ε
′∗
µ′ · pje−ik

′·rj |In〉〈In|
∑N

j′=1 εµ · pj′e
ik·rj′ |G〉

~ωk − (En − Eg) + iΓ
2

(1.15)

as shown in Ref. [29].

Given these matrix elements, the differential cross-section (i.e., the probability that a
photon is scattered into a given solid angle dΩ) can be calculated using the relations

d2σ

dEdΩ
=
wρ(E)

c/V
, and ρ(E) =

V

(2π)3

E2

~3c3
(1.16)

where ρ(E) is the density of photon states (in the quantization box of volume V ) with
energy that satisfies ~ωk ≤ ~ωk′ + dE.[34, 29] Substitution of the matrix elements into Eq.
1.13 and integration over energy (whereby the delta function ensures that only the elastic
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scattering is included) gives

dσ

dΩ
= r2

0

∣∣∣∣∣(ε∗µ′ · εµ)
∑
i

〈G|ei(k−k′)·ri|G〉

+
∑
n

〈G|
∑N

j=1 ε
′∗
µ′ · pje−ik

′·rj |In〉〈In|
∑N

j′=1 εµ · pj′e
ik·rj′ |G〉

~ωk − (En − Eg) + iΓ
2

∣∣∣∣∣
2 (1.17)

where r0 = e2/(mc2) is the classical electron radius. Note that the quantization box volume
V is not present in this observable and all the pre-factors except r0 have canceled out. It
is now apparent that the first term is simply Thomson scattering, which has the usual
polarization factor (ε∗µ′ · εµ)2 and is proportional to the square of the Fourier transform
F (Q) of the electron density ρ(r), defined by

F (Q) =
∑
i

〈G|eiQ·ri |G〉 =

∫
dreiQ·rρ(r). (1.18)

The second term is the resonant charge scattering differential cross-section. This term can
be further simplified if one takes the electric dipole approximation whereby the exponential
term in Eq. 1.17 is expanded as e−ik·rj ∼ (1+ik·rj−(k·rj)2/2+. . . ), keeping as many terms
as needed for describing a particular process. For the resonant processes discussed here,
only the first term contributes significantly. Multipole analysis involves keeping additional
terms and has been covered in Refs. [34, 7, 10, 11, 15].

Keeping just the first term in the dipole approximation, the resonant scattering cross-
section can be further simplified by replacing the momentum operator according to p =
m
i~ [r, Hel] = m

i~r(En−Eg), where Hel is the electron Hamiltonian that gives the energies of
the ground and intermediate states. Using this commutator identity and dropping all pre-
factors, the differential cross-section for electric dipole resonant scattering can be written(

dσ

dΩ

)
res.

∝

∣∣∣∣∣∑
n

〈G|ε′∗µ′ · (
∑

j rj)|In〉〈In|εµ · (
∑

j rj)|G〉
~ωk − (En − Eg) + iΓ

2

∣∣∣∣∣
2

. (1.19)

To illustrate the use of Eq. 1.19, it can further be shown (see Refs. [7, 11, 29]), that in
the special case of atoms treated as free ions with spherical symmetry that is only broken
by their magnetic moment, the differential cross-section simplifies to(

dσ

dΩ

)
res.

∝

∣∣∣∣∣∑
n

[
(ε′∗µ′ · εµ)F (0) − i(ε′∗µ′ × εµ) · znF (1) + (ε′∗µ′ · zn)(εµ · zn)F (2)

]∣∣∣∣∣
2

, (1.20)
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where the functions F (0,1,2) (as defined in Ref. [11], not to be confused with F (Q)) are
related to the radial wave functions of the atomic states (in terms of spherical harmonics)
and zn is a unit vector in the direction of the magnetic moment of the nth ion.4 It may be
surprising that although we previously dropped the terms with an explicit spin term, there
is a reappearance of magnetic scattering here in the second and third terms of Eq. 1.20.
This comes from the Pauli exclusion principle. Since the resonant scattering cross-section
depends on the availability of states into which the core electron can transition and since
the electron’s spin is conserved during the transition, the transition rate will depend on
whether the core electron has the same spin or opposite spin as the unoccupied state.[29]
These unexpected resonant magnetic scattering terms are important, as they can be used
to explain x-ray magnetic dichroism effects in x-ray absorption spectroscopy,[36, 37] and
also do contribute to resonant magnetic x-ray scattering effects.

The specific case of a free ion with spherical symmetry is, however, not general nor
always appropriate. Many ions in real crystals can have their spherical symmetry broken
due to their electronic environment (e.g., octahedral, tetragonal or orthorhombic coordi-
nation) in addition to perhaps having a local magnetic moment. Such anisotropy often
translates to magneto-optical effects, which will influence how an atom scatters light of
a given polarization. Instead of representing the interaction term by a scalar quantity
(complex or otherwise) a Cartesian tensor can be used.[4, 5]

An elegant treatment of this problem for x-ray scattering was recently presented.[38]

With the atomic scattering form factor denoted as a tensor f̂ rather than a scalar quantity,
the differential cross-section, or measured scattering intensity, is given by

I ∝ dσ

dΩ
∝

∣∣∣∣∣∑
j

(
ε′∗µ′ · f̂j · εµ

)
eiQ·rj

∣∣∣∣∣
2

, (1.21)

where the scattering tensor f̂j at atomic site j can be written, in the lowest possible
symmetry (i.e., triclinic) and dropping the site index, as

f̂(ω) =

 fxx(ω) fyx(ω) fzx(ω)
fxy(ω) fyy(ω) fzy(ω)
fxz(ω) fyz(ω) fzz(ω)

 . (1.22)

The components of f̂j depend on photon energy and are complex. For systems with
either cubic, tetragonal or orthorhombic symmetry, charge scattering contributions will

4Had we carried out the calculation including the matrix element M4, we would have found an extra
contribution to the charge scattering term proportional to (ε′ · ε); however, it turns out this correction is
less than 1% of the above term so it is safe to neglect.[15]
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only appear on the diagonal of this tensor but magnetic scattering contributions can appear
on and off-diagonal and will generally depend on the direction of the local magnetization
and the crystal symmetry.[38] These diagonal charge terms will play a crucial role in
Chapter ??, where the crystal symmetry and absence of sensitivity to magnetic order give
a tensor of the form

f̂charge =

 fxx 0 0
0 fyy 0
0 0 fzz

 . (1.23)

The tensorial representation of the scattering form factor has gained significance as the
RSXS technique becomes more accessible and is used to study materials with increasingly
complex magnetic structures or anisotropic crystal structures. However, prior to this de-
velopment (and in cases where a full tensor is not needed) the complex, yet non-tensorial,
atomic scattering form factor was (and is) used to calculate scattering intensities. I will
now relate the atomic scattering form factor to the differential cross-section, show how it
relates to the scattering tensor and highlight a practical, yet powerful, method of modelling
resonant scattering processes.

1.2.3 Atomic scattering form factor

The relation between the differential cross-section and the atomic scattering form factor
(also called the scattering length or scattering amplitude) is defined as

dσ

dΩ
= |f |2 . (1.24)

This comes simply from the definition that the scattered wave will have its amplitude
reduced by a factor of f as compared to the incident wave. Comparing Eq. 1.24 to Eq.
1.17, we can see that f can be decomposed into 3 terms5

f = fT + f ′ + if ′′

f(ω, ε, ε′) = fT(ε, ε′) + f ′(ω, ε, ε′) + if ′′(ω, ε, ε′),
(1.25)

where fT is the usual non-resonant Thomson form factor and f ′ + if ′′ is the anomalous
scattering form factor (also called the dispersion correction). The first line in Eq. 1.25 is
a shorthand form whereas the second line shows which terms depend explicitly on polar-
ization and/or energy. While fT is simply proportional to the number of electrons, we see

5Actually a fourth term, fM should appear in Eq. 1.25, corresponding to the non-resonant magnetic
scattering that would have been included if the matrix element M2 wasn’t dropped.
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that f ′ + if ′′ comes from the second order perturbation in H3, producing a photon energy
dependent, complex quantity with a damped pole (resonance) at ~ω = En − Eg. In this
way, the atomic scattering form factor is clearly divided into a non-resonant and resonant
contribution, both of which derive from the quantum mechanical interaction of an elec-
tromagnetic plane wave with an electron, as detailed in the previous section. Comparing
terms in Eq. 1.4 and Eq. 1.21, it is apparent that f and f̂ are related by

f(ω, ε, ε′) =
(
ε′∗µ′ · f̂ · εµ

)
, (1.26)

clarifying the link between the traditional atomic scattering form factor and the more
general tensor representation.

If we suppose that we are dealing with spherical symmetry (f̂ = fI3, where I3 is the
identity matrix) and an isolated atom, then it is possible to calculate f ′ and f ′′ for all the
elements. This problem has been studied extensively, and the most complete and currently
the “best” tabulation of such theoretical calculations for elements Z = 1−92 in the energy
range E = 1 − 10 eV to 0.4 − 1 MeV is given by combining the tables in Refs. [39, 40].
It is possible to obtain this data using the online resource at Ref. [41]. An empirical
tabulation of the atomic scattering form factor is given in Ref. [42], which can also be
accessed online.[43] For offline access, I have created a Mathematica notebook that loads
these databases and can then provide f ′ and f ′′ for all the elements and arbitrary photon
energy (this is posted publicly online, see Ref. [44]).

While the empirical and theoretical tabulations are largely convergent, there can be
sizeable differences, particularly at very low photon energy E < 100 eV and in the near-
edge regions. For an example of such differences, and to establish a general idea for how f
depends on photon energy, Fig. 1.1 shows f ′ and f ′′ for Cu and O in the soft x-ray regime.
The imaginary component (f ′′) has notable “step-like” features and the real part (f ′) has
“poles” that coincide with these steps.

The so-called edge-steps come from an instantaneous jump in the |G〉 → |I〉 transition
probability of the free-atom. If one has familiarity with x-ray absorption spectroscopy,
it becomes apparent that f ′′ is related to the x-ray absorption cross-section. In fact,
this comes from the terms in H3 that annihilate the incident photon but do not create a
scattered photon,[17] and we can then identify that the differential cross-section for x-ray
absorption is

dσabs

dΩ
=

4π

k
f ′′. (1.27)

This relation defines the optical theorem,[45, 28] an important consequence of which is that
the real and imaginary parts of the scattering amplitude satisfy the famous Kramers-Kronig
dispersion relations.[46]
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Figure 1.1 – The real and imaginary parts of the atomic scattering form factor for Cu (left) and
O (right) tabulated for photon energies in the soft x-ray regime. The discontinuous jumps in f ′′

correspond to x-ray absorption edges. A finite-width pole (resonance) in f ′ occurs at the edges.
Two sources are compared. The empirical data is interpolated from the available data in Ref.
[42]. The theoretical data is from Ref. [39]

1.2.3.1 Kramers-Kronig dispersion relations

The Kramers-Kronig dispersion relations are

f ′(E) =
2

π
P
∫ ∞

0

E ′f ′′(E)

E ′2 − E2
dE ′ (1.28)

f ′′(E) = −2E

π
P
∫ ∞

0

f ′(E)

E ′2 − E2
dE ′ (1.29)

where the integral P
∫

denotes a Cauchy principal value integral. These are causal relations,
strictly referring to the fact that a scattering event must first be preceded by an incident
wave interacting with the scatterer.[46] The power of these relations is that it is generally
possible to measure the x-ray absorption cross-section (eg., with an x-ray transmission
experiment), and thus to empirically determine f ′′ as a function of energy. Given this, one
can use Eq. 1.28 to determine f ′(E) and thus determine both f ′ and f ′′ from an x-ray
absorption measurement. This is what was done in Ref. [42] to tabulate f ′. Even in the

case that a scattering tensor f̂ is needed, it is possible to measure the x-ray absorption with
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the polarization vector aligned with the different crystal axes and build up the scattering
tensor from these components (see Ref. [47] for an example of this done for YBCO).

As a slightly technical point, there are various integration schemes that can be found in
the literature to deal with the principal value integral (see Refs. [42, 39] for two examples).
These techniques are designed to succeed over a wide energy range by performing different
integrations depending on whether the energy is near or far from an absorption edge.
They are also coded in low level languages to ensure high speed. For the Kramers-Kronig
transforms presented in Chapters ?? and ??, it was not crucial to reproduce these features,
so I opted to implement the numerical integration in Mathematica. The key feature is that
the numerical integral can simply be performed with a single (high level) function call of
the form:

f ′[E] := Z +
2

π
NIntegrate

[
E ′f ′′[E ′]

E ′2 − E2
, {E ′, 0, E,∞},Method→

{
“PrincipalValue”,

Method→
{

“AdaptiveMonteCarlo”, “BisectionDithering”→ 1/8
}}
,

MaxRecursion→ 200

]
,

providing numerous options to control how NIntegrate is evaluated. Note that I have
included the atomic number Z in this calculation to match the NIST definition for the real
part of f , which includes the low-Q limit of fT (given simply by Z)6. To test this method,
I calculated f ′ from the tabulated values of f ′′ for a variety of elements and compared
them to the tabulated f ′ values. A few such calculations for O, Cu, C, K, Ba, and Pb
are presented in Fig. 1.2. I have made the precise implementation used to generate these
calculations publicly available at Ref. [48]. As can be seen, this method provides a very
good approximation of the tabulated f ′ values over the full energy range.

The residuals do highlight that this integration method has difficulty converging at the
absorption edges (where f ′′ is discontinuous). However, in a realistic use-case that I am
considering, the tabulated near-edge values of f ′′ would be replaced by high resolution x-ray
absorption data, such that the edge-jumps would either be smooth or small compared to
the x-ray absorption near-edge structure. Consequently, this numerical integration method
is generally quite reliable for the use case it targets. It is also worth pointing out the same
integration strategy was used for all cases in Fig. 1.2, but it is very likely that better results
can be achieved on a case-by-case basis by optimizing the strategy.

6This is approximate, as for very high energy a relativistic correction is needed, and Z should be
replaced by Z∗ ≈ Z − (Z/82.5)2.37, relevant for high Z elements.[42]
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Figure 1.2 – The real part of f = f ′ + if ′′ for O, Cu, C, K, Ba, and Pb was calculated (red)
and is compared to the tabulated values of f ′ (black) for free-atoms. Here, f ′ also includes the
Thomson term fT, which is approximately Z for low Q. The numerical integration strategy used
to evaluate the Kramers-Kronig transformation is described in the text. Minor convergence issues
are noticeable at the edge-steps due to discontinuities in f ′′ there. The tabulated values of f ′ and
f ′′ are from Refs. [39, 40], which are accessible online.[41]

While the existing methods and tabulated values are generally better and have been
more thoroughly verified for free-atom calculations of f ′ than this approach, another im-
portant benefit of this method is that it is simple to build upon it to reliably calculate
near-edge values of f ′ for non-free atoms with experimental x-ray absorption data as an
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input. This is a tremendously useful tool for modelling resonant soft x-ray scattering,
since the x-ray absorption cross-section is sensitive to the “true” electronic structure of a
material and it is in many cases simple to measure at a synchrotron. In contrast, relying
on a quantum mechanical formula akin to Eq. 1.17, requires the self-consistent determi-
nation of the ground state and all intermediate state wavefunctions that the core-electron
can transition into, which for atoms in a crystal can quickly become a very complicated
problem. This problem can be made tractable if one makes assumptions about the elec-
tronic structure and takes advantage of an existing software package to do the calculations
(eg. CTM4XAS [49]). This is a great way to identify the origin of different features in
x-ray absorption spectra. Yet, the calculations typically need to be validated against x-ray
absorption data, so there is little benefit to using the calculations rather than XAS as an
input to resonant scattering model calculations.

A general outline of how to use empirical x-ray absorption data along with the Kramers-
Kronig numerical transformation method above is as follows (the calculations in Chapters
?? and ?? followed this procedure):

1. Convert XAS for element X in a multi-atom material to a form proportional to f ′′

(a) Normalize XAS to σabs
tot = σabs

X + σabs
other and then subact σabs

other, giving σabs
X

(b) Calculate σabs
X × E ∝ f ′′ = f ′′data

(c) Normalize f ′′data to the tabulated values f ′′tables

2. Join f ′′data and f ′′tables together

3. Define a function f ′′interp that linearly interpolates the values f ′′data and f ′′tables

4. Define f ′′interp for energies outside the tabulated range as

(a) f ′′interp(E < Emin) = f ′′(Emin)

(b) f ′′interp(E > Emax) = f ′′(Emax)(E/Emax)−2

5. Evaluate Eq. 1.28 using f ′′interp in the integrand.
Modify NIntegrate strategy as needed.

With this approach, it is possible to fully determine the complex atomic scattering form
factor for an element within a crystal structure that has a non-trivial electronic structure.
Utilizing the polarization dependence of the x-ray absorption measurement, it is also pos-
sible to determine the individual elements of the more general scattering tensor to treat
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scattering for a more complex system. Then, armed with some knowledge (or a reasonable

guess) of how f̂ depends on site index j in Eq. 1.21, it is possible to calculate how the
resonant scattering intensity should depend on photon energy, polarization and Q. In this
thesis, the photon energy dependence is studied for the cuprates La1.475Nd0.4Sr0.125CuO4

and YBa2Cu3O6.75 in Chapters ?? and ??, respectively, and the polarization and Q de-
pendence are evaluated for La1.875Ba0.125CuO4 and YBa2Cu3O6.67 in Chapter ??.

1.2.4 The polarization dependence in REXS

The polarization vectors are, in addition to the scattering tensor, an essential part of Eq.
1.21. They effectively provide sensitivity to the different elements of f̂ . In Eq. 1.21, ε
and ε′ are labeled explicitly with an index µ (although it is often omitted for brevity),
which denotes the mode. These modes can be represented by two basis vectors which are
perpendicular to the wave propagation direction. The convention is to define the basis
with two linear polarization vectors εσ and επ, where εσ is perpendicular to the scattering
plane and επ is parallel to it. One choice of basis that has its primary axes aligned with
Q, k + k′, and k × k′ is depicted in Fig. 1.3.

Figure 1.3 – Scattering geometry with reference frame chosen such that x̂s ‖ (k−k′), ŷs ‖ (k+k′),
and ẑs ‖ (k × k′). The angle between k and k′ is defined as 2θ.

Formally, evaluation of Eq. 1.21 then requires summation over µ = {σ, π} and µ′ =
{σ′, π′}. There are four possibilities: σσ′, σπ′, πσ′, and ππ′. This can be represented as a
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scattering matrix G (still at site j), given by

Gj =

(
ε′∗σ′ · f̂j · εσ ε′∗π′ · f̂j · εσ
ε′∗σ′ · f̂j · επ ε′∗π′ · f̂j · επ

)
. (1.30)

The scattering intensity is then I ∝
∣∣∣∑µ,µ′

∑
j Gje

iQ·rj
∣∣∣2 = Iσσ′ + Iσπ′ + Iπσ′ + Iππ′ .

Depending of the incident polarization and whether the polarization of the scattered rays
can be discriminated, G can take on different forms. For example, if the incident light is
σ or π polarized and an instrument is available to detect the outgoing light polarization,
each scattering channel can be measured individually. More commonly (for soft x-ray
beamlines), the incident polarization can be controlled but the outgoing polarization is
unknown, leading to scattering that is either Iσσ′ + Iσπ′ or Iπσ′ + Iππ′ .

The case of Thomson scattering is particularly simple. For a spherically symmetric
scatterer, we have f̂j ∝ I3, (I3 is the identity matrix). With polarization vectors defined
as in Fig. 1.3

εσ =

 0
0
1

 εσ′ =

 0
0
1

 (1.31)

επ =

 cos θ
− sin θ

0

 επ′ =

 cos θ
sin θ

0

 , (1.32)

we find

G =

(
1 0
0 cos(2θ)

)
, (1.33)

by evaluation of Eq. 1.30. This reveals that only the σ → σ′ and π → π′ scattering channels

are active for Thomson scattering. If the incident light is σ polarized, then IT
σ =

∣∣fT(Q)
∣∣2.

For π polarization, we have IT
π = cos2(2θ)

∣∣fT(Q)
∣∣2. For unpolarized incident light, the

scattering intensity is the average IT
unpol. = (1/2)(1 + cos2(2θ))

∣∣fT(Q)
∣∣2. This pre-factor

is the well-known polarization factor for Thomson scattering. Notably, for unpolarized
incident incident light, Thomson scattering produces polarized light.

For non-magnetic charge scattering, the scattering tensor f̂charge (see Eq. 1.23) can be
used, giving

Gcharge =

(
fzz 0
0 fxx cos2(θ)− fyy sin2(θ)

)
. (1.34)
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Similar to Thomson scattering, charge scattering only consists of σ → σ′ and π → π′

processes. This relation can be useful when comparing resonant scattering intensities for
incident σ or π polarization, although generally one also needs to take the absorption of the
incident and scattered photons into account, since for an anisotropic absorption/scattering
tensor the absorption cross-section would differ for σ and π polarization.

1.3 Experimental methods

1.3.1 Beamline

The RSXS experiments presented in this thesis date back to early 2010,7 and were all per-
formed at the Canadian Light Source’s REIXS (Resonant Elastic and Inelastic X-ray Scat-
tering) 10ID-2 beamline using an in-vacuum four-circle diffractometer.[50] In synchrotron
parlance, the REIXS beamline is referred to as 10ID-2, meaning that the insertion device
(ID) is the second one installed on the 10th straight section of the CLS’s storage ring. The
ID at REIXS is an elliptically polarizing undulator (EPU) with 43 poles having a 75 mm
period and spanning 1.6 m. This EPU produces linearly polarized photons with energy
100→ 3000 eV or circularly polarized (left or right) photons with energy 100→ 1000 eV.
For linear polarization, the angle of the polarization can be set arbitrarily.

The optical configuration of the REIXS beamline is shown schematically in Fig. 1.4.
REIXS features a variable line spacing plane grating monochromator (VLS-PGM) with
three gratings (Ni low energy, Au low energy, Au high energy) and four coatings (Ni, C, Si,
Au) on the plane mirror. These can be chosen to optimize flux at photon energies spanning
the full energy range of the beamline. A variable exit slit can be used to adjust energy
resolution, giving maximal energy resolutions of 0.005 eV at 100 eV and 0.13 eV at 1000
eV. The size of the exit slit gap is typically set in the 10–50 µm range and is approximately
proportional to flux. The beamline produces a flux of 5× 1012 photons/s/0.1% bandwidth
(for 100 mA ring current and 1000 eV). Since the incident flux I0 depends on energy,

7Specifically, the data presented here was collected from February 2010 to January 2015, beginning
shortly after the REIXS beamline and scattering endstation were put together. For context, the monochro-
mator and EPU at REIXS were installed in November and December of 2007, respectively, and two years
later the scattering chamber received its first light (June 2009) and the first spectrum was recorded (July
2009). The diffractometer was commissioned (characterization and testing) from August 2009 to April
2010 by many people, including myself. Some of this early work is presented in Chapter ??. The first
access to general users was later made possible by letters of intent (specific proposals likely to succeed) in
May 2010, followed soon thereafter by competitive proposals (January 2011).
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Figure 1.4 – Schematic of REIXS beamline showing novel x-ray optics configuration capable of
sending spatially separated beams from two EPUs to the sample position simultaneously. Figure
adapted from Ref. [51].

storage ring current and other beamline settings (grating, coating, exit slit gap, etc.), the
electron yield from a high transmission Au mesh is used to record I0 for normalization.
The beam spot size at the sample position is width×height ≈ 250× 150 µm. Note that in
typical usage, light from only one of two EPUs is sent down the optical path for scattering,
but that REIXS features an operating mode and optics capable of using the light from
10ID-1 (normally servicing the neighbouring soft x-ray spectromicroscopy beamline) and
10ID-2 simultaneously, such that two different light polarizations can be rapidly switched
during a measurement.

The entire beamline is operated in ultra-high vacuum (UHV) conditions (P < 10−9

Torr). This is firstly needed to ensure a long lifetime of the electron orbit in the storage
ring, which the EPU is a part of. It is also quite important due to the use of soft x-rays, since
even for modest pressures, the mean path length of soft x-rays can suffer dramatically.8

Operating in UHV also reduces the amount of contaminants that can build up on optical
elements of the beamline by limiting adsorption or potential condensation of gases such as
water vapour onto these components. For samples that are heated and cooled in vacuum,
this can also be quite important since certain measurements (e.g., electron yield or resonant
reflectivity) can be sensitive to the topmost layers of the sample.

1.3.2 Diffractometer and detectors

The following discussion is an abbreviated summary of some of the essential aspects of the
elastic scattering chamber and diffractometer design, which are covered thoroughly in Ref.

8See Section A.3 for a brief illustration of this point.
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[50]. Some details here will differ due to modifications to the system that have occurred
since Ref. [50] was published in July 2011.

The ∼1 m diameter stainless steel vacuum chamber pictured in Fig. 1.5 at the REIXS
beamline houses an UHV 4-circle diffractometer (Fig. 1.6) consisting of a 2-circle goniome-
ter mounted on a central θ ring and a detector arm mounted on a separate 2θ ring. The
diffractometer is mounted on a separate subframe than the main scattering chamber and
connected to it with flexible bellows, so that the diffractometer can be translated into the
x-ray beam path independent of the main scattering chamber.

A load lock is used so samples can be transferred without venting the scattering cham-
ber. The load lock has a garage for storage of up to 3 sample holders at a time. Sample
holders are transferred into the scattering chamber using a magnetically coupled rack and
pinion linear translator that uses a pincer mechanism to securely hold onto a small tab

Scattering chamber

Cryostat

Load lock

X-rays from beamline

Chamber frameDiffractometer
subframe

Transfer arm

Figure 1.5 – The RSXS scattering chamber at the CLS’s REIXS beamline. A polarized,
monochromatic beam of soft x-rays from the beamline enter from the right and focus at the
sample position, centred in the scattering chamber. A load lock is used to store samples and fa-
cilitate sample transfers. The closed-cycle cryostat is mounted on top of the scattering chamber.
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on the sample holder. Gate valves are used to isolate the scattering chamber from the
beamline and the load lock from the scattering chamber during sample transfers.

MCP

photodiode

slit wheel

z stage

y stage

x stage

support structure

heat shield

sample holder

heater

in-vacuum stepper motor

channeltron

sample receptacle

Figure 1.6 – The in-vacuum four-circle diffractome-
ter at the CLS’s REIXS beamline.

The load lock is pumped down with
a 300 L/s Pfieffer turbopump and typi-
cally reaches 5×10−7 Torr in ∼ 45 min
or less, sufficiently low for transfers.
The main chamber is pumped using
a 700 L/s Pfieffer turbopump (backed
by a triscroll roughing pump) and a
CTI Cryotorr 8F cryopump. A closed-
cycle cryostat is mounted on a differ-
entially pumped rotatory feedthrough,
located at the top of the chamber. The
feedthrough is pumped in two stages
by the triscroll pump and a 2 L/s
ion pump. The pressure in the scat-
tering chamber is usually better than
5 × 10−9 Torr. Pressure gauges in-
clude a cold cathode gauge, a hot fila-
ment ion gauge and a residual gas ana-
lyzer, for low pressure measurements,
as well as thermocouple and convec-
tron gauges for intermediate and high
pressures, respectively.

Sample translations up to ±7.5 mm
are accomplished with stacked x, y and
z linear translation stages mounted on
the goniometer. The θ and 2θ motions,
originally supported motion ranges of
−25◦ to +265◦, but due to instrument
modifications and practical considera-
tions, ranges of −60◦ to 165◦ for θ and −25◦ to 172◦ for 2θ are currently imposed. The
φ and χ motions have (approximate) ranges of ±7◦. These motions are primarily used to
correct sample alignment but can also be used to expand the range of accessible Q.

Cooling is achieved by connecting the cryostat’s cold head to the sample receptacle with
flexible copper braids (not seen in Fig. 1.6 since the braids are inside the heat shield). These
braids damp vibrations from the cryostat and also reduce torsional forces if the cryostat
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is stationary while θ is rotated (the cryostat can also be rotated to match θ rotations,
keeping constant torsion on the support frame). Moreover, because the cooling elements
are decoupled from the sample receptacle, their thermal expansion or contraction do not
affect the sample position.

The sample receptacle is attached to a support structure, built with thin-walled stainless
steel tubing, and mounted atop the translation stages of the goniometer. The support
structure design minimizes thermal conduction between the sample holder (and receptacle)
and the rest of the goniometer, reducing the heat load on the cryostat. It also limits
thermal expansion of the support structure as the sample temperature is varied. For
example, raising the temperature from 20 K to 298 K, thermal expansion accounts for just
∼ 180 µm of sample displacement along the z-axis, as shown in Fig. 1.7.
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Figure 1.7 – The relative displacement ∆z = z(T ) − z(20 K) due to thermal expansion of the
support structure, sample holder, and sample receptacle. The negative sign indicates that the z
stage must be lowered to centre as temperature is increased. The dashed line is a polynomial fit
providing a reasonable interpolation scheme for this temperature range.

With the configuration pictured in Fig. 1.6, a base temperature at the sample position of
18 K was possible during the 2009 to October 2013 timeframe. At the end of 2013 (October
to November) a magnet assembly was installed on the sample receptacle, increasing the
thermal load and raising the base temperature to ∼23 K. This base temperature may
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be improved in the future with planned revisions to the heatshield design. Heating is
accomplished with a 100 W Lakeshore HTR-25-1000 cartridge heater, which is thermally
connected to the sample receptacle just above the sample holder position. A sapphire plate
and ceramic hat washers are used to electrically isolate the heater from the sample holder
assembly. The heater is sufficiently powerful to raise the sample temperature to 400 K
with the cryostat in operation.

MCP

photodiode

slit wheel
channeltron

Polarization 
analyzer

Figure 1.8 – Detector assembly in the RSXS scattering chamber

Four detectors are currently installed on the detector arm (Fig. 1.8): a micro-channel
plate (MCP), a photodiode (PD), a channeltron (ChT) and a polarization analyzer. These
are located at a radius of ∼29 cm from the sample position and are mounted to a structure
that can be raised or lowered by 40 mm to place any of the detectors in the scattering
plane. The MCP has a 25 mm diameter and provides 2D sensitive single-photon detection
capability. A negatively charged grid is placed in front the MCP to capture positively
charged ions (from ion gauges or possibly ejected from the sample). The front surface is
also negatively biased to repel electrons from the surface. The ChT is a 10×10 mm detector
that provides single photon sensitivity similar to the MCP but without 2D sensitivity. It
has a similar biasing scheme as the MCP. The PD has a 10×10 mm active area, is sensitive
to a very wide range of photon energies with a linear response for photon energies up to 5
keV and a high dynamic range (currents can range from 10−12 to 10−5 A, suitable for the
high flux of the direct beam or an x-ray fluorescence measurement). A slit wheel allows
the the selection of different slits (with width × height of 10× 10 mm, 1× 2 mm, 0.5× 3
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mm, 0.1× 3 mm, or 0.1× 1 mm) and thin Al or SiN filters to be placed in front of either
the ChT or PD. The different slits give control over detector resolution and the filters can
be used to block charged ions or reduce the detection of background fluorescence.

The polarization analyzer uses two PDs and a selection of 4 multilayers suited for
different x-ray absorption edges (O K: 530 eV, Mn L: 645 eV, Ni L: 860 eV, and Cu
L: 940 eV), which can be switched using two Attocube rotary actuators, to reflect the
vertical and horizontal polarization components of the scattered light into one of the two
PDs. This design is not well suited to studying weak scattering signatures (as seen in this
thesis), since the intensity losses due to this multilayer reflectivity are extreme (97% for O
K and 99.85% for Cu L), but it can be useful in reflectivity experiments, where at small
angles the flux of scattered light can be very high.

1.3.3 Sample preparation

For successful RSXS experiments, it is essential to prepare samples with good surface
quality and with an orientation that provides access to a chosen zone in reciprocal space.
This is because, unlike hard x-ray scattering, the range of Q is very restricted and RSXS
can be sensitive to surface effects. I will first discuss crystal orientation by Laue diffraction
and then discuss crystal cleaving and polishing methods. Also, I will briefly describe the
methods used to mount samples for RSXS measurements.

x-rays from tube

35 kV

I

0.3 0.90.5 0.7
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crystal

photographic
film

Figure 1.9 – Laue backscattering ge-
ometry for single crystal orientation.

In many cases, the crystallographic orientation
of as-grown crystals is not known. It is possible
to determine the orientation with Laue diffraction.
A typical configuration for Laue diffraction uses an
x-ray tube with a tungsten target in order to pro-
duce a broad spectrum of x-rays. This broad spec-
trum of light can then readily satisfy Bragg’s law (or
the Laue condition) simultaneously for many crystal
planes with different dhkl and lead to a series of spots
that can be recorded by photographic film. Laue
diffraction can be measured in transmission (x-rays
pass through a sample) or backscattering (x-rays are
diffracted back towards x-ray tube) geometry. For
the thick crystals studied in this thesis, backscatter-
ing geometry was more suitable. The backscattering
geometry is depicted in Fig. 1.9.
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A practical application is illustrated in Fig. 1.10. Here, Laue backscattering was used to
orient an La1.475Nd0.4Sr0.125CuO4 (LNSCO) crystal boule with unknown orientation. First,
a measurement on a cut surface was taken (left panels, Fig. 1.10). The orientation was
solved using OrientExpress by indexing high symmetry points shown in the lower left panel
of Fig. 1.10.[52] Angular corrections were calculated to orient the boule with the a(b) axis
perpendicular to the page and with c horizontal. A goniometer (see Fig. 1.11) was used to
make these rotations and a subsequent Laue image (right panels, Fig. 1.10) confirmed the
re-orientation.

The boule and goniometer were then transferred to a wire saw so that a cut could
be made along the ab plane. The sample was then mounted on this flat surface so that
subsequent cuts would produce tall samples with the c axis along the long side and a or b

Figure 1.10 – Laue backscattering images taken on a cut surface of an LNSCO boule before
(left) and after (right) orienting. The top row shows the Laue image as captured and the bot-
tom row shows a superimposed Laue simulation obtained using OrientExpress.[52] (Simulation
parameters: film to crystal distance: 35 mm, scattering geometry: 180◦, space group: I4/mmm,
lattice constants: a=b=3.787 Å, c=13.24 Å)
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Figure 1.11 – A crystal boule of LNSCO was cut on a wire saw, first to expose a surface for
Laue diffraction (top left), and then along a crystallographic plane (top right), for subsequent
mounting (bottom left) and additional cuts (bottom right). The samples shown in the bottom
right have the c axis out of the page and a(b) along their width and length.

horizontal. The different cutting stages are illustrated in Fig. 1.11. These smaller pieces
were then cut parallel to the flat edge,9 and finally once more along the horizontal of this
page, producing 4 tall samples with approximately square bases and dimensions in the
range of ∼ 1.5× 1.5× 3 mm to ∼ 2× 2× 3 mm.

After orienting a crystal, the next important consideration is the condition of the sur-
face. The wire saw achieves its cutting action by dragging a grit of boron carbide across
the sample, producing a rough and highly textured surface, as shown in Fig. 1.12 (a), not

9The flat edge enables further Laue measurements to establish the final orientation of the crystal,
as-mounted and ready for scattering. This is important, since small errors compound and it is rare to
have a perfectly oriented crystal. Knowing approximately where to look in angle-space with the soft x-ray
diffractometer can save a lot of time.
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(a) (b) (c) (d)

Figure 1.12 – (a)-(c) A sample of LNSCO with different surface conditions. (a) The rough surface
results from cutting on the wire saw. (b) The shiny, bumpy surface results from fracturing in
vacuum. (c) The flat, smooth, and shiny surface results from polishing (a piece broke off, giving
it a trapezoidal shape). (d) An La1.875Ba0.125CuO4 sample prepared for cleaving with a top post.

suitable for RSXS or XAS (due to surface damage and contamination). The load lock of
the scattering chamber is equipped with a blade and anvil sample cleaver, which in this
case was used to apply pressure to the sides of the sample and cause it to fracture in
vacuum, producing a fresh surface [Fig. 1.12 (b)] for XAS and RSXS measurements.10 It
is also possible to cleave or fracture a sample by attaching a post at the top of the sample
[Fig. 1.12 (d)]. An impact is then delivered to the top post and if the crystal is weaker
than its bonds to the sample plate and top post, a fresh surface will be exposed. Besides
cleaving, one can also polish a crystal to produce a smooth, flat surface [Fig. 1.12 (c)].

Polishing was performed in stages usually beginning with a 10 µm boron carbide pow-
der, suspended in mineral oil, to obtain the primary grinding action. Water-based suspen-
sions were avoided since cuprates are a bit hydroscopic. Using progressively finer powders
(eg. “jeweler’s rouge”, ∼0.5 to 1.5 µm), the surface could be smoothed down gradually.
The finishing stages used 0.3 and 0.05 µm lapping films. Given the delicate nature of the
samples, this was all done by hand using a custom-built polishing assembly. The polishing
direction could be aligned with a high-strength axis of the crystal to minimize the like-
lihood of fracturing. Despite this, parts of the samples did frequently fracture or break
off (usually near the edges). A comparison of the surface conditions of two YBa2Cu3O6+x

samples before and after polishing is shown in Fig. 1.13. The polished surfaces appeared
smooth and mostly featureless at a magnification of 45× (noted by eye, not pictured here).

For detecting charge density wave order by RSXS in La-based cuprates, cleaving sam-
ples has typically been a necessary step. Cleaving in vacuum or in air are both viable
approaches, with the former having the benefit of giving more reliable electron yield at the

10The pictured sample is oriented with its weak plane not aligned with the sample cleaver, so the surface
results formally from a fracture, not a cleave. The terms are often used interchangeably.
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Unpolished Polished

Figure 1.13 – Polishing YBa2Cu3O6+x samples. Left: unpolished samples. Right: after pol-
ishing. Polishing was performed in stages, as described in the text. The top row is a sample of
YBa2Cu3O6.335 and the bottom row is a sample of o-III ordered YBa2Cu3O6.75. The polishing
procedure succeeded in removing the surface imperfections. Although the polishing procedure
was gentle, parts of both samples can be seen to have broken off.

expense of being a more difficult procedure. I have also had success detecting CDW order
from a polished LNSCO surface. For YBa2Cu3O6+x, polishing was useful for eliminating
surface imperfections, but not essential for detecting the charge density wave order.

It is also important to have good electrical and thermal conductivity with the sample
holder. Electrical contact can be made using silver epoxy (EPO-TEK H21D), high purity
silver paint (SPI #5001-AB), silver paste (SPI #5063-AB) or carbon tape (SPI #05081-
AB). For low temperatures or experiments with significant temperature cycling, the silver
epoxy and paint are better choices, since they retain their strength and provide excellent
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thermal and electrical conductivity. Silver epoxy forms a much stronger and more per-
manent bond than silver paint, making it suitable when samples are to be cleaved. Silver
epoxy can be excessive for many applications, since removing it typically requires scraping
with a scalpel and hours of sonication in acetone. In contrast, silver paint can be removed
with a few minutes of sonication in acetone. For room temperature measurements, sil-
ver paste and carbon tape are good choices. Silver paste dissolves in acetone, with little
need for sonication. Samples mounted on carbon tape can usually be removed simply with
tweezers. Occasionally, carbon tape residue is left on the sample. The residue can be wiped
off or dissolved in acetone.
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A.1 Relation between Miller indices and (θ, 2θ) in a

2-circle scattering geometry

We begin with the Laue equations written in Eq. 1.1. Recall that a1, a2 and a3 are the
primitive vectors of the crystal lattice and H, K and L are Miller indices for a reciprocal
lattice vector G that satisfies G = Hb1 + Kb2 + Lb3, where b1, b2 and b3 are the basis
vectors for the reciprocal lattice.[24]

a1 · (k′ − k) = 2πH

a2 · (k′ − k) = 2πK (A.1)

a3 · (k′ − k) = 2πL

Working in the lab reference frame, rotations of the sample about the center of a four-
circle diffractometer have the effect of rotating the primitive vectors. The rotation rotation
matrix for our four-circle diffractometer that gives this rotation is R = Rθ ·Rχ ·Rφ, written
fully as:

R =

(
cos(θ) cos(φ)− sin(θ) sin(χ) sin(φ) − sin(θ) cos(χ) sin(θ) sin(χ) cos(φ) + cos(θ) sin(φ)
cos(θ) sin(χ) sin(φ) + sin(θ) cos(φ) cos(θ) cos(χ) sin(θ) sin(φ)− cos(θ) sin(χ) cos(φ)

− cos(χ) sin(φ) sin(χ) cos(χ) cos(φ)

)
.

(A.2)

We define the beam direction as x̂, the sample normal when θ = 0 as ŷ, and the vertical
direction as ẑ. This definition gives k = 2πE

hc
x̂ and k′ = 2πE

hc
[cos(ω)x̂ + sin(ω)ŷ], where I

am now using ω instead of 2θ to avoid confusing notation, E is the photon energy in
eV, and hc is Planck’s constant times the speed of light in vacuum.1 Thus Q = k′ − k =
2πE
hc

[(−1+cos(ω))x̂+sin(ω)ŷ]. For an orthorhombic crystal mounted with its a axis aligned
to −x̂, its b axis aligned to ẑ and its c axis aligned to ŷ (lattice constants a, b, and c), Eq.
A.1 becomes

R · (−x̂) · (k′ − k) = 2πH/a

R · (+ẑ) · (k′ − k) = 2πK/b (A.3)

R · (+ŷ) · (k′ − k) = 2πL/c

1Note that when c appears as hc, it is the speed of the light, whereas when it appears as L/c, it is the
lattice constant.
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For a diffractometer operating in 2-circle mode, we can set χ and φ to 0, thus simplifying
Eq. A.3 considerably. First, we find that K = (0 0 1) · (k′ − k) = 0, reducing the problem
from 3 to 2 dimensions. The two remaining equations are then given by:

−hc
E

H

a
= cos(θ − ω)− cos(θ) (A.4)

−hc
E

L

c
= sin(θ − ω)− sin(θ). (A.5)

Dividing Eq. A.4 by Eq. A.5, we arrive at

H

L

c

a
= tan

(ω
2
− θ
)
. (A.6)

Adding the square of Eq. A.4 to the square of Eq. A.5, we arrive at(
hc

E

)2(
H2

a2
+
L2

c2

)
= 2− 2 cos(ω), (A.7)

which can be re-written using the trigonometric identity 2 − 2 cos(x) = 4 sin2(x/2) and
taking the square root of both sides

hc

2E

√
H2

a2
+
L2

c2
= sin

(ω
2

)
. (A.8)

Eq. A.8 is just a 2-dimensional formulation of Bragg’s Law, nλ = 2d sin(θB). We can see

this by using the relations λ = hc
E

,
√

H2

a2
+ L2

c2
= 1

d
, n = 1, and sin(ω

2
) = sin(θB).

The equations Eq. A.6 and Eq. A.8 can be used to solve for (θ, ω) for a desired (H,L).
This is how Eq. 1.2 and Eq. 1.3 were derived in the main text. Note, a different notation
was used (ω → 2θ, θ → θs, L→ K, c→ b). Explicitly, in this notation, the relations are:

ω = 2 sin−1

 hc

2E

√(
H

a

)2

+

(
L

c

)2
 (A.9)

θ =
ω

2
− tan−1

(
H

L

c

a

)
, (A.10)

Interestingly, when deriving Bragg’s Law from the Laue equations, we realize that
Bragg’s Law fails to relate θ to the Miller indices. For any Bragg peak with H = 0, this
does not matter, as we have a specular condition and θ = ω/2 by definition. It also does
not matter for measurements of crystalline powders (with all possible orientations fulfilled),
as then the definition of θ is meaningless. For diffraction from single crystals, however, one
certainly needs to use the Laue formulation!
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A.2 Wedge angle for azimuthal rotation experiment

In chapter ?? an azimuthal rotation experiment was performed to rotate sample about
QCDW. For this a wedge-shaped azimuthal sample plug had to be made with the correct
surface angle. See Fig. ?? for the geometry. Here I will derive the formula for this angle.

The wedge acts as an additional rotation that occurs before φ, χ or θ, so the rotation
matrix with the wedge included is given by R = Rθ ·Rχ ·Rφ ·Rw, where Rw will provide a
rotation about the ẑ axis in the positive θ direction of magnitude θw. This can be simplified
using the substitutions θ = ω/2 and χ = 0. The former ensures that the axis of rotation of
φ is aligned with Q (specular geometry with θw = 0), while the latter limits the possible
solutions to those only involving θw. The rotation matrix is then given by:

R =

(
cos(w) cos

(
ω
2

)
cos(φ)− sin(w) sin

(
ω
2

)
− sin(w) cos

(
ω
2

)
cos(φ)− cos(w) sin

(
ω
2

)
cos

(
ω
2

)
sin(φ)

sin(w) cos
(
ω
2

)
+ cos(w) sin

(
ω
2

)
cos(φ) cos(w) cos

(
ω
2

)
− sin(w) sin

(
ω
2

)
cos(φ) sin

(
ω
2

)
sin(φ)

− cos(w) sin(φ) sin(w) sin(φ) cos(φ)

)
. (A.11)

We then evaluate the system Eq. A.3 using Eq. A.11 and find that it reduces to

−H
a

= 2 sin(θw) sin
(ω

2

) E
hc

K

b
= 0 (A.12)

L

c
= 2 cos(θw) sin

(ω
2

) E
hc

The wedge angle is thus found easily, giving

θw = − tan−1

(
H

L

c

a

)
. (A.13)

The sign is not important for manufacturing the wedge. However, some care should be
taken when defining φ = 0 in this system. Whether the wedge angle adds to θ or subtracts
from θ at φ = 0 turns out to be important for comparison to model calculations that
incorporate absorption effects, since these can cause the scattering intensity for φ = 0◦ and
φ = 180◦ to differ.
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A.3 Photon path lengths

The maximum path length pmax (cm) that photons of energy E can traverse through air
while retaining a fraction f = I/I0 of their initial flux can be approximated by

pmax = − ln(f)(ρµ(E))−1, (A.14)

where µ(E) is the x-ray attenuation coefficient (cm2/g) and ρ = 4.64444 × 10−4P/T is
the density of dry air (g/cm3) with pressure P (Torr) and temperature T (K). Table A.1
shows pmax for 100 eV photons passing through dry air at room temperature calculated
at pressures ranging from atmospheric pressure to UHV. Note that higher energy photons
have larger pmax than calculated here, since µ(100 eV) > µ(E > 100 eV) for dry air.

Table A.1: Maximum path length pmax that 100 eV photons can traverse through dry air
while maintaining I/I0 > f as a function of pressure. Calculated for T = 20◦C.

P (Torr) pmax (cm) pmax (cm)
f = 0.50 f = 0.99

760 1.19×10−2 1.72×10−4

100 9.02×10−2 1.31×10−3

1 9.02 1.31×10−1

10−3 9.02×103 1.31×102

10−6 9.02×106 1.31×105

10−9 9.02×109 1.31×108

As a practical example, if we want to build a 20 m long beamline (at room temperature)
and we want less than 1% flux loss for 100 eV photons, using Eq. A.14, we find that P
must be less than 6.54×10−5 Torr. This illustrates one fundamental reason why soft x-ray
beamlines typically operate in UHV conditions for all of their optical components. Other
reasons are the need to be connected to the storage ring, which is kept under UHV, and to
minimize contamination on optical components. The generally much smaller experimental
endstations can in principle be designed to operate at higher pressures with consideration
of these flux losses.
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